Mix Manufacturing VSM

Learn how to use eVSM for discrete manufacturing applications, allowing you to analyze capacity, lead time, and cost.

Date Publised: 8 March 2024

How to Use this File

This file contains the reading materials and the exercise pages from the course (title on previous page). While the course can only be taken on a computer, this booklet can be useful for note taking and later for refresher training.

This booklet is designed for on screen and print use. For on screen use, we recommend Acrobat Reader with the page display set to "Single Page View". If you are using this booklet on-screen while going through the exercises in eVSM, a second monitor is very helpful.

For hardcopy use, print the file on 8.5×11 or A 4 , and bind along the long edge.

Table of Contents

Lesson 1: Mix Manufacturing Concepts 1
Working with eLeanor 2
Value Stream Demand 3
Lead Time 5
Capacity 7
Capacity Analysis Charts 8
Cost Calculations 10
Resource Time 14
Used Time \& Available Time 16
Lesson 2: Building a Value Stream Model 19
eVSM Mix Modeling Process 20
Mix Manufacturing VSM Stencils 21
Recap: Essential Terminology 22
Declare Products and Sets with the Mix Manager 24
Draw and Sequence 26
Routings Exercise 1 27
Data on Sketch Centers 29
Enter Data 31
General vs Product Specific Inventory 32
Example Map 1 35
Example Map 2 37
Lesson 3: Analyze the Value Stream Model 40
Topics Covered in this Lesson 41
Mix Manufacturing Charts 42
Supplier Demand Exercise 1 46
Optional Add-on Calculations 48
Add-ons for the Activity Center in Mix Manufacturing 49
Add-ons Usage Examples 50
OEE Losses 53
OEE Quality 54
OEE Performance 54
OEE Availability 54
OEE Direct 54
EPEI - Every Part Every Interval 58
Activity EPEI add-on and Activity EPEI Chart 59
Activity Based Cost Calculations 61
Resource Analyses 62
Modeling Multi-use Equipment 63
Repeat Center Modeling Tips and Rules 64

Mix Manufacturing Concepts

The Mix Manufacturing VSM application focuses on plant value stream mapping for mixed model manufacturing of discrete parts and assemblies. This first lesson introduces the key concepts used in manufacturing value streams and mix modelling.

Before proceeding with this course, you MUST complete the Fast Draw and the Quick Mix Time courses.

Working with eLeanor

The eLeanor learning system includes a range of useful functions:

Important Notes

1. When you complete an exercise, you MUST click the "Grade It" button.
2. Points are deducted for incorrect attempts.
3. If you are stuck on an exercise, check the Hint. If that does not help, go back and review the preceding Readme pages. If you are still unsure, click the Feedback button and ask your question.

Value Stream Demand

Demand for the value stream is set by the customer and flows upstream through all the activities towards the suppliers. Generally, the demand at an activity is equal to the next downstream operation. Exceptions occur when activities are shared resources, have scrap, have parallel processing, etc. Here are some examples:

Scrap

Shared Resources

This Shared Machine has Additional demand of 60 Item/ Wk from another value stream

Components Demand

Multiple Suppliers

Q. What is the weekly demand at Supplier B?
© 80 Item/Wk
(100 Item/Wk
© 90 Item/Wk
© 75 Item/Wk

Lead Time

Lead time is the time it takes for an item of work to go through a process. It includes all of the time components such as work time, wait time, transport time, etc. The process may be an individual activity, a segment of a value stream, or the whole value stream. So it is important to clarify what part of the value stream the lead time is for.

Example 1 - Lead Time is the Sum of all times

Example 2 - Critical Path is the Lead Time of the Iongest path

Time $=2 \mathrm{Min}$
Q. What is the lead time for the critical path?
© 29 Days
(0) 38 Days
© 31 Days
© 34 Days

Capacity

A clear understanding of capacity allows you to see if you can meet the customer demand, identify excess resources, and select the best way to address any bottlenecks. The capacity of an activity is the maximum number of "good" products it can produce in a given time period.

The simple calculation for capacity is:

$$
\text { Capacity }=\frac{\text { Available Time }}{\text { Cycle Time }}
$$

Typical value streams have losses such downtime, setup time, changeovers, process inefficiencies, rework, scrap, etc. So, a more general calculation is:
Capacity $=\frac{\text { Available Time }}{\text { Cycle Time }}-$ Losses

Example 1 - No Capacity Losses

Cycle Time $=10 \mathrm{Min} / \mathrm{Item}$ Available Time $=8 \mathrm{Hr} /$ Day

Capacity $=\frac{8^{*} 60}{10}=48$ items/day

Example 2 - Capacity with 12\% Scrap

Cycle Time $=10 \mathrm{Min} / \mathrm{ltem}$
Available Time = $8 \mathrm{Hr} /$ Day
Scrap loss = 12\%

$$
\text { Capacity }=\frac{8^{*} 60}{10}-12 \%=43 \text { items/day }
$$

Capacity Analysis Charts

Charts are often used to visualize capacity across all activities in the value stream. These charts can help see where the bottle-neck process is, which activities have insufficient capacity, how well the line is balanced, and where there may be excess capacity. Here are some examples.
All three charts show that the Assemble activity is the bottle-neck and that the Inspect activity has excess capacity.

Q. What is the Daily Capacity of this Process?
© ~46 Item/Day
(0) ~28 Items/Day
© ~43 Items/Day
© ~48 Items/Day

Cost Calculations

In a value stream map, if you know the cost of each activity for a given part, you can calculate the value of the part at any point in the value stream. This in-turn allows you to calculate the total value of inventory at any point, total value of all the inventory, holding costs, and period costs.

Cost of an Item

The cost of an item is the total expense to make that item. The cost of an item increases as it flows through the value stream. Each activity it goes through adds some cost. This activity cost can include machine time, energy usage, secondary materials, facility space, etc. It may also include human resource cost, if the resource cost is not being analyzed separately. So, the cost of an item at any point in the value stream is:
[Sum of all upstream costs] + [Activity Cost] + [Resource Cost]

Example

Note: Cost is what you spend to make a product, price is what the customer pays.
Q. What is the cost of 1 spade when it reaches the customer?
© $\$ 17$
(0) $\$ 3$
© $\$ 21$
© $\$ 15$

Q. What is the total value of the finished goods inventory?
© $\$ 2800$
() $\$ 3200$
© $\$ 3400$
() $\$ 4100$

Q. What is the annual cost of running this operation?
© ~K\$234
(\sim ~K 202
(0) ~K\$195
(0) ~K\$180

Resource Time

How much of the resource time is used each day?

Example

Staff
Available Time $=4$ Hrs/Day
Resource Process Time $=6 \mathrm{Min} /$ Unit
Cost $=\$ 45 / \mathrm{Hr}$
Efficiency $=90 \%$
\# of staff = 4

$$
\text { Resource Time }=\frac{200 * 6}{0.9}=\frac{1200}{0.9}=1333.33 \text { Mins/Day }
$$

Q. How much of the resource time is used each day?
© 1000 Mins/Day
(0) 4 Hrs/Day
© $6.5 \mathrm{Hrs} / \mathrm{Day}$
© 800 Mins/Day

Used Time \& Available Time

What are the costs of the used time and the available time?

Used Time $=$ Demand * Resource Process Time
Efficiency

Cost of Used Time $=\frac{\text { Used Time }}{\text { Min per hour }}$ * Cost
$=\frac{(200 * 3) / 0.90}{60} * 45$
= \$500 / Day

Cost of Available Time = Available Time * \# of staff * Cost
$=4^{*} 4^{*} 45$
= \$720 / Day

Q. What are the costs of the used time and the available time?
© Used Cost = \$700, Available Cost = \$650
($)$ Used Cost $=\$ 667$, Available Cost $=\$ 640$Used Cost = \$640, Available Cost = \$667
(Used Cost $=\$ 550$, Available Cost $=\$ 640$

Staff
Available Time $=4 \mathrm{Hrs} /$ Day (per staff)
Resource Process Time $=8 \mathrm{Min} /$ Unit
Cost $=\$ 40 / \mathrm{Hr}$
Efficiency $=80 \%$
\# of staff $=4$

You learned:

- Plant level discreet parts and assembly value stream mapping terminology such as activity time, inventory, scrap, activity cost, holding cost, and risk.
- How demand flows upstream from the customer.
- How some of the key metrics are calculated on plant level manufacturing maps.

What's next:

You will learn how to build a plant level manufacturing value stream model from scratch.

Building a Value Stream Model

This lesson teaches how to build an eVSM Mix model with the Mix Manufacturing application from scratch. A brief overview is followed by descriptions and hands-on exercises to declare a mix of products, draw the flow, specify routings, enter data, check, and solve the model.

Mix Manufacturing VSM Modeling Process

eVSM Mix Modeling Process

You learned how to build an eVSM Mix value stream model in the Mix Time course. If unsure of the process, you should review the notes for lessons 3, 4, and 5. In summary, the process is as follows:

In this lesson, you will practice the above steps to build Mix Manufacturing models. Details of building eVSM Mix models were covered in the Mix Time course. Use the Mix Time course notes PDF file as a refresher if you need. You can download a fresh copy from https://evsm.com/MixTimeV12

Mix Manufacturing VSM Stencils

This is a subset of the main stencil.
Useful for new users and for quicker access to the icons used most frequently

This is the main stencil and

The sketch stencil contains only the shapes required to create a flowchart (no data fields) of the value stream. Used to capture the flow. Once the flow is established, a single click will add all the default datashapes to the page.

Recap: Essential Terminology

Start a Mix Manufacturing Map

Initiate this page for a Mix Manufacturing map

Declare Products and Sets with the Mix Manager

1. Initiate this page for a Mix Manufacturing map.
2. Use the Mix Manager dialog (not Excel) to enter the following products and sets.
3. Exit the Mix Manager dialog and click the "Draw Sets" button in the toolbar.
4. Click Grade It.

Note: These are the exact steps you learnt in the Mix Time course.

Set Names	
Adult Bike	C01-City Bike C02-Mountain Bike C03-Hybrid Bike
Kids Bike	C04-Super Bike

Edit Products and Sets

In the Mix Manager dialog, make the changes shown below. After editing, click the "Draw Sets" button in the toolbar. Then Grade It!

Current:

Set Names	Product Names
Set 1	Product 1 Product 2
Set 2	Product 3 Product 4

Change to:

Set Names	Product Names
Set 1	Product 1
Set 2	Product 5 Product 4
Set 3	Product 2 Product 3

$\frac{\sim}{5}$	Year	Wk	Wk
	52	40	5
	Wk	Hr	day

Draw and Sequence

1. Initiate the page for a Mix Manufacturing VSM
2. Draw this flow with the Sketch Mix Manufacturing stencil. No need to draw the Set centers.
3. Add Sequence arrows to show the flow of materials.
4. Grade It!

Routings Exercise 1

Routings Exercise 2

Use Set Gates to set up the routings on the map below as shown in the product matrix.

Set ID	Set Name	Product ID	Product Name	Raw material	Stamping	Drilling	Machining	Assembly	Finished Goods	Customer
S1	Set 1	P1	Product 1	x	X	X	x	x	x	x
S1	Set 1	P2	Product 2	x	x	x	x	x	X	X
S2	Set 2	P3	Product 3	x	x		x	x	x	x

s1-Set 1
p1 - Product 1 (Qty 0) p2 - Product 2 (Qty 0)
s2 - Set 2
p3 - Product 3 (Qty 0)
\square

Data on Sketch Centers

If the flow has been drawn with a Sketch stencil, then you can automatically turn the flowchart into a data based value stream model. Just right-mouse click on any Sketch Mix Manufacturing shape on the page and use the "Add all data (page)" command.

Add Data Shapes to Sketch

Use the right-mouse menus on the centers to add default data shapes to this sketch.

Enter Data

Enter the Cycle Time and Customer Demand values as shown.

$\underset{\sim}{\sim}$	Year	Wk	Wk
	52	40	5
	Wk	Hr	day

General vs Product Specific Inventory

The inventory center allows input of general (total) inventory and product specific inventory.

General inventory is used when product specific count is not available.

If product specific count is available, then enter the values in the Inventory data shape.

The two inventory types get added together. So at each inventory center, enter either the general or the product inventory. Never both.

Product-specific Inventory Example
General Inventory Example

$\frac{\sim}{5}$	Year	Wk	Wk
	52	40	5
	Wk	Hr	day

Enter Data Values with the List Variables dialog

Through the List Variables dialog, change the "Qty Per Cycle" values at the Assemble operation to:

P1 = 2 Item
P2 $=4$ Item
P3 $=4$ Item

$\stackrel{\text { Year }}{5}$	Wk	Wk	
	52	40	5
	Wk	Hr	day

Adjust Product Flow

Adjust the map to show:

- Supplier A provides 30\% Raw Castings
- Supplier B provides 70\% Raw Castings
- Supplier C does 50% of the machining

\square

$\stackrel{\text { Year }}{ }$	Wk	Wk	
	52	40	5
	Wk	Hr	day

Example Map 1

In the next exercise, you will draw the map below from scratch. A printed copy of this page will be helpful.

ID	Name ID	Name	Stamp	Drill	Assemble	Thread	Customer	
S1	Set 1	P1	Product 1	X	X	X	X	X
S2	Set 2	P2	Product 2	X	X	X		X
S2	Set 2	P3	Product 3	X	X	X		X
S2	Set 2	P4	Product 4	X	X	X		X
S1	Set 1	P5	Product 5	X	X	X	X	X

\square
\square

Assemble - Cycle Time Product	
Default	Value
1 - Product 1	1
2 - Product 2	130.00
3 - Product 3	105.00
4 4 Product 4	100.00
5 - Product 5	100.00

$\underset{\sim}{\sim}$	Year	Wk	Wk
	52	40	5
	$W k$	Hr	day

	Auto	
$\underset{\substack{\text { Prod } \\ \text { Oata }}}{ }$	35	

Draw the map shown on the previous page below.

Initialize the page for Quick Mix Mfg, create the products and sets shown in the matrix, draw the Set centers, draw the map with the Sequence arrows, specify the routings, and enter the data values. No need to Solve the map.

ID	Name ID	Name	Stamp	Drill	Assemble	Thread	Customer	
S1	Set 1	P1	Product 1	X	X	X	X	X
S2	Set 2	P2	Product 2	X	X	X		X
S2	Set 2	P3	Product 3	X	X	X		X
S2	Set 2	P4	Product 4	X	X	X		X
S1	Set 1	P5	Product 5	X	X	X	X	X

Example Map 2

In the next exercise, you will draw the map below from scratch. A printed copy of this page will be helpful.

ID	Name	Supplier 1	Supplier 2	Castings	Machine	Surface Treetment	Assemble	Springs	Finished Goods	Customer
P1	Product 1	X	X	X	X	X	X	X	X	X
P2	Product 2	X	X	X	X		X	X	X	X
P3	Product 3		X	X	X	X	X		X	X
P4	Product 4		X	X	X	X	X		X	X
P5	Product 5		X	X	X	X	X		X	X
P6	Product 6	X	X	X	X	X	X	X	X	X

Finished Goods - Inventory	
Product	Value
Default	d
1 - Product 1	300.00
2-Product 2	300.00
3 - Product 3	200.00
4 - Product 4	250.00
5 - Product 5	280.00
6 - Product 6	200.00

Draw the map shown on the previous page below.

Follow the instructions in the last example map exercise. You will need to figure out what Sets are needed and which products will be in each Set. Complete the exercise by Solving the map.

Image of map and matrix available here

You Practiced:

- How to declare products and group them into sets.
- How to draw the material flow and specify routings.
- How to add data and solve the map.

Mix Manufacturing VSM Modeling Process

What's next:

In the next lesson, you will learn how to visualize the analyses results on the map, and how to extend the map to address common what-if scenarios.

Analyze the Value Stream Model

In the last lesson you practiced building full working value stream models with the Quick Mix Manufacturing application.
In this lesson, you will learn how to analyze the model for key metrics such us demand, capacity, lead time, and cost. You will also see how to extend the model to explore "What-If" scenarios.

Note: This lesson provides practice exercises for many of the topics covered in the Mix Time course. It would be wise to keep a copy of the Mix Time course notes handy. You can download a fresh copy from: https://evsm.com/MixTimeV12

Mix Manufacturing VSM

Analyze the Value Stream Model

Topics Covered in this Lesson

1. Mix Manufacturing Standard Charts
2. Mix Manufacturing Add-on Calculations
3. What-If Scenario Examples

Additional Mix Manufacturing Functions

There are a number of other general functions available in Mix Manufacturing which are very useful but are not covered in this course. These are covered in the Quick Mix Time course. Download PDF copy at https://evsm.com/MixTimeCourse12

- Category Function
- Gadgets
- Resource Analyses
- Input data through Excel
- Edit charts

Mix Manufacturing Charts

Mix Manufacturing includes several built in charts.

Plotting Charts...

These charts can only be plotted if the required data is available on the map and after the model has solved successfully.
To plot a chart, simply drop the chart icon on the drawing page, and use the plot command in the right mouse menus of the chart shape. Some charts (e.g. Lead time chart) include a filter to remove unwanted paths from the chart.

For mo ${ }^{4}$ 己 information on creating new and customizing existing charts, see https://evsm.com/productivity.

Capacity/Demand Chart

	Year	Wk	Wk
	52	40	5
	Wk	Hr	day

Plot the Lead time Chart For Path 2

Drop the Lead Time Chart shape from the Quick Mix Mfg stencil. Set it's
Path Filter to path 2. Then plot the chart.

s1-Set 1
p1 - Product 1 (Qty 150.0)
p2 - Product 2 (Qty 80.0)
s2-Set 2
p3 - Product 3 (Qty 180.0)

Product Utilization Chart

Plot the Product Utilization chart to identify the highest utilization products. Review the chart and click Grade It!

	Year	Wk	Wk
	52	40	5
	Wk	Hr	day

Supplier Demand Exercise 1

What is the weekly demand at the Supplier for raw materials for products P1 and P2?
Follow these steps:

1. Make the "Demand" variable visible at the Supplier via the Views dialog.
2. Solve the model and see the result.

$\stackrel{\text { Year }}{5}$	Wk	Wk	
	52	40	5
	Wk	Hr	day

Supplier Demand Exercise 2

Each of the three products require a different number of isolators. How many isolators do we need per week from the Isolators supplier?
Follow these steps:

1. Make "Path Demand \%" variable visible on the sequence arrows and enter appropriate demand \% values to reflect the data in the table.
2. Make "the "Demand" variable visible on the supplier centers.
3. Solve the model to see the demand values.

s1-Set 1

P1 - Product 1 (Qty 100.0)
P2 - Product 2 (Qty 25.0)
s2-Set 2
P3 - Product 3 (Qty 75.0)

$\underset{\sim}{5}$	Year	Wk	Wk
	52	40	5
	Wk	Hr	day

Optional Add-on Calculations

Many common calculations are built into main centers and sequence arrows. The yellow icons in the Quick stencils facilitate extension of the value stream model to handle additional data and calculations.

How to Use Add-ons

Just drag out the desired add-on from the stencil and drop it on the green center shape. It will automatically get attached to the bottom of the variable stack.

Example

This plant has $8 \mathrm{Hrs} /$ Day of production time as indicated in the Time Center. Therefore it is assumed the welding process is available for 8 Hrs/Day. However, what if the welding process is required to work 1.5 Hrs overtime? You can use the Activity Time yellow add-on to show the actual total production hours.

Add-ons Icon Positions in the Stencil

There is a unique correspondence between green icons in the stencil and the yellow icons that immediately follow the green icon. So yellow icons must be used ONLY with the green icons they "belong" to.

Add-ons for the Activity Center in Mix Manufacturing

Activity Changeover

Add-on to show changeover losses

Activity Downtime

Add-on to show percentage of time (on average), the activity is not available

Activity NVA

Add-on to represent portion of activity cycle time that is non-value added

Activity Performance

Add-on to represent OEE
performance and associated losses

Activity OEE Availability

Add-on to allow direct specification of OEE availability 49

Activity OEE Direct

Add-on to represent OEE \% as a product of Availability, Quality and Performance

Activity Time

Add-on to use when available activity time is different from the rest of the value stream time

Activity Shortage

Add-on to show percentage of times a shortage in components stops production in the activity

Activity Inspection

Add-on to show percent of parts needing inspection at the activity. The demand for the activity is then based on the inspection percent

Activity Blockage

Add-on to show percent of times
blockage from down stream process stops production in the activity

Activity EPEI

EPEI (Every Part Every Interval) calculations for the activity based on production sequence and related changeover times

Activity Scrap

Add-on to show scrap \%

Activity Stations

Add-on to show number of stations working parallel in the activity

Activity FMEA

FMEA of the activity

Activity Maintenance

Add-on to show maintenance loss.

Activity Rework

Add-on to show percentage of units that need to be reworked

Activity Man_Auto

Add-on to note machine / manual times

Add-ons Usage Examples

Activity Stations

Milling Process with 3 Stations.
The 'Cycle Time' and 'Qty Per Cycle' are specified for a single station

Activity

Stations

> Auto Sec

Activity Changeovers

Stamping process has 4 changeovers per day

Activity Scrap \& Downtime

Assemble process has 5% scrap and 12% downtime.

Activity NVA

Machining process with NVA of 2 Minutes within the

Activity Capacity Losses

Use Activity center add-ons to modify this model to show:

- Activity A: 12% downtime per day
- Activity B: 10% rework
- Activity B has 2 stations
- Activity A and B : One 30 min setup every morning
- Activity C: 35 min maintenance 2 times a week
- Activity C: 8% scrap

Resolve Capacity Deficiency

Use add-ons to assess if 1 hour per day overtime is sufficient to alleviate the bottleneck at the Final Assembly activity.

$\frac{n}{5}$	Year	Wk	Wk
	52	40	5
	Wk	Hr	day

s1-Set 1
p1 - Product 1 (Qty 150.0)
p2 - Product 2 (Qty 80.0)
s2-Set 2
p3 - Product 3 (Qty 180.0)

OEE Losses

OEE Direct

OEE can be specified either in terms of it's components (like scrap, downtime, etc.) or simply as the overall OEE value.
In the example below, the Activity OEE Direct add-on is used to specify the overall OEE at the Polish station. Note that if component values are ALSO specified (like Scrap \%), these are considered as PART OF the overall OEE value.

	Year	Wk	Wk
	52	40	5
	Wk	Hr	day

Activity Time for Shared Resource

The equipment at the Machine operation has been upgraded and is now under-utilized.
Management wish to allocate 3 hours per day to another value stream. Can you still meet the demand targets given that you will need an additional 30 minutes per day for setup? Make the appropriate modifications to the map and use the $\mathrm{CT} / \mathrm{TT}$ chart to check.

s1-Set 1
p1 - Product 1 (Qty 150.0) p2 - Product 2 (Qty 80.0)
s2-Set 2
p3 - Product 3 (Qty 180.0)

	$\frac{4}{5}$	Year	Wk	Wk
		52	40	5
prod		Wk	Hr	day

Changeovers

With the current demand mix, we need 3 changeovers per day at the Machine operation. Each changeover requires 22 minutes. Can we still meet demand?

Demand Growth

The demand for Product 2 (P2) is expected to increase from the current 80 Item/Wk to 160 Item/Wk. Use the CT/TT chart to identify any activities which will have capacity issues?

		Year	Wk	Wk
		52	40	5
${ }_{\text {Prod }}$		Wk	Hr	day

EPEI - Every Part Every Interval

EPEI is a load leveling method popular in mixed production. The aim is to make the smallest batches of all products within the shortest period of time. Helps minimize inventory and improves flexibility so the line can react more quickly to variations in demand.

The EPEI calculations is simply the sum of the times for all batches plus the changeover times between the batches. The result can be presented in a product wheel like this.

Data required for EPEI Calculation

Inputs of EPEI

- Desired interval
- Available time for production
- Cycle Time for each SKU
- Sequence of product C/O
- CO time from one SKU to next

A0010		P
Milling		
Cycle Time	5	Min
Qty Per Cycle	1	Item
Desired EPEI	1	Day
Actual EPEI	Auto	Wk
Product Sequence	$\begin{aligned} & >1 \\ & <3 \\ & \hline \end{aligned}$	Seq
Single Changeover	2	Hr
Minimum EPEI	Auto	Hr

Outputs of EPEI

- Unused time available
- Actual EPEI time
- Minimum EPEI time
- EPEI Chart

Activity EPEI add-on and Activity EPEI Chart

The two shapes have to be used in conjunction to create an EPEI chart. See the numbered steps below

EPEI Chart Exercise

Plot the EPEI chart to explore possible improvements at the Machining process.

$\underset{\mathrm{y}}{\mathrm{y}}$	Year	Wk	Wk
	52	48	6
	Wk	Hr	day

Activity Based Cost Calculations

Using the data in the table, set up this model to calculate the value of each of the 3 products at the Finished Goods inventory.
Steps:

1. Through the Views dialog, make the "Added Unit Cost" and "Cumulative Unit Cost" variables visible on the map.

	Added Unit Cost		
Center	P1	P2	P3
Components Inventory	$\$ 1.00$	$\$ 1.00$	N/A
Castings Inventory	$\$ 5.00$	$\$ 5.00$	$\$ 5.00$
Build	$\$ 5.00$	$\$ 5.00$	$\$ 3.00$
Finished Goods	$\$ 0.00$	$\$ 0.00$	$\$ 0.00$

2. Enter the "Added Unit Cost" values from the table.
3. Open the product specific values dialog for the "Cumulative Unit Cost" variable at the Finished Goods inventory.

Resource Analyses

Are 8 Machinists sufficient to meet the customer demand?
Steps:

1. Drop a Resource Center on the page and name it "Machinists"This topic was covered in detail in the Mix Time course, lesson 5. You can access the course notes at:
https://evsm.com/MixTimeV12
2. Enter data values to show we have 8 machinists and each available 8 hours per day.
3. Add Resource Pipes and enter data to show that machinists spend 10 minutes per item on Milling and 9 minutes per item on final assembly.
4. Solve the model and plot the Resource Balance chart.

Modeling Multi-use Equipment

The Repeat Center can be utilized when equipment needs to be used at multiple places in the value stream. The Repeat Center makes it straightforward to see which activities share the equipment and correctly estimate key metrics like capacity and lead time.
In this example, the three blue processes share the same station (machine). The Repeat Center is connected to all three with pipe arrows (not sequence arrows). The eVSM Solver then takes care of allocating machine time based on cycle times and demand for each activity.

Repeat Center Modeling Tips and Rules

For each repeat use station, simply drop a Repeat center on the page and connect it to the processes involved with Pipe arrows. Then when the model is Solved, the software will handle all the repeat use adjustments. Here are some rules and recommendations.

You Learned

- How to work with the Mix Manufacturing standard charts.
- How to specify general and product specific inventory.
- The scope Mix Manufacturing add-on calculations and how to use them.
- Reviewed a number of What-If scenarios the value stream model can be used for.

Recommended Next Steps:

1. Sketch your first value stream with the Sketch Mix Manufacturing stencil.
2. Create a value stream model.
3. Email any questions to support@evsm.com.
4. Go through the eVSM Improvement Framework course - accessed from: https://www.evsm.com/my-skills

Analyze the Value Stream Model

-Useful Links-
eVSM Toolbar Guide
eVSM Productivity Guide
eVSM Blogs
eVSM Support FAQ
Download the Latest Version
evsm.com/toolbarguide
evsm.com/productivity
evsm.com/blog
evsm.com/support
evsm.com/install

